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SUMMARY 

In this paper, the Boundary Force Method (BFM), a form of an indirect 

houndary element method, is used to analyze composite laminates with cracks. 

The BFM uses the orthotropic elasticity solution for a concentrated horizontal 

and vertical force and a moment applied at a point in a cracked, infinite sheet 

as the fundamental solution. The necessary stress functions for this 

fundamental solution were formulated using the complex variable theory of 

orthotropic elasticity. The current method is an improvemtnt over a previous 

method that used only forces and no moment. 

comparing it to accepted solutions for a finite-width, center-crack specimen 

subjected to uniaxial tension. Four graphite/epoxy laminates were used: 

[ 0 / + 4 5 / 9 0 I s ,  [0], [+45Is, and [ + 3 0 I s .  The BFM results agreed well with accepted 

solutions. Convergence studies showed that with the addition of the moment in 

the fundamental solution, the number of boundary elements required for a 

convergcxd solution was significantly reduced. Parametric studies were done for 

two configurations for which no orthotropic solutions are currently available: a 

single edge crack and a n  inclined single edge crack. 

The improved method was verified by 
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INTRODUCTION 

Previous work for orthotropic materials (ref. 1) used the stress functions 

for ii concentratcid horizontal and vertical force applied at a poiiit in a 

cracked, infinite sheet as the fundamental solution. The present work extends 

the fundamental solution to include a moment, as in the method for isotropic 

materials. The necessary stress functions for this fundamental solution are 

formulated using the complex variable theory oE orthotropic elasticity (ref. 2). 

The addition of  the moment DOF to the orthotropic forinulat ion o f  the BFM is 

evaluated by comparing the BFM results to accepted solutions for a finite-width 

center-crack specimen subjected to uniaxial tension. Convergence studies are 

done comparing the methods for forces only and for moments and forces. 

Parametric studies are done for specimens w i t h  a single edge crack and an 

inclined single edge crack. 
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NOMENCLATURE 

half length of a center crack or length of an edge crack, m 

3 constants in stress functions, N/m 

complex constants (i,j = 1 , 2 )  

Young's moduli in the x- and y-directions, respectively, Pa 

 mod^ I and mode I1 strcss- i n t m s i  ty correction factors 

influence coefficient matrix, N/m 

orthotropic shear modulus, Pa 

height of plate, m 

mode I and mode I1 stress-intensity factors, Palm 

unit moment on the ith boundary element, N-m 

concentrated moment, N-m 
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number of  boundary e lements  

normal and s h e a r  c r a c k - f a c e  l o a d i n g  f u n c t i o n s ,  Pa 

u n i t s  loads  on t h e  ith boundary e l e m e n t ,  N 

c o n c e n t r a t e d  f o r c e s  i n  t h e  x -  and y - d i r e c t i o n s ,  
r e s p e c t i v e l y ,  N 

v e c t o r  of  unknown f o r c e s ,  N 

x- and y-components of  a p p l i e d  l o a d i n g ,  N 

v e c t o r  o f  e x t e r n a l  l o a d s ,  N 

remote a p p l i e d  stress, Pa 

l o c a t i o n  o f  l o a d  p o i n t  on c r a c k  face,  m 

e x t e r n a l l y  a p p l i e d  moment, N - m  

complex v a r i a b l e ,  ( i  = 1 t o  4 )  

width  o r  h a l f - w i d t h  o f  p l a t e ,  m 

C a r t e s i a n  c o o r d i n a t e s ,  m 

l o a d  p o i n t ,  ( z o  = xo + i y o ) ,  m 

incrementa l  d i s t a n c e ,  ( i  = 1 t o  N ) ,  m 

o r t h o t r o p i c  stress f u n c t i o n s ,  Pa  

P o i s s o n ’ s  r a t i o s  

s t resses ,  Pa 

r o o t s  of t h e  c h a r a c t e r i s t i c  e q u a t i o n  

BOUNDARY FORCE METHOD 

Force Method ( r e f .  3 )  is a numerical  t chniqu which u s e s  

fund;tmental s o l u t  i o n s  f o r  c o n c e n t r a t e d  f o r c e s  and moments i n  a n  i n f i n i t e  s h e e t  

t o  o b t a i n  t h e  s o l u t i o n  t o  t h e  boundary v a l u e  problem o f  i n t e r e s t .  These 

fundamental  s o l u t i o n s  a r e  used t o  e x a c t l y  s a t i s f y  t h e  s t ress-free c o n d i t i o n s  on 
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the crack faces. The other boundary condi‘tions are approximately satisfied by 

applying the appropriate sets of concentrated horizontal. and vertical forces and 

moments along the boundary. 

Consider, for example, the finite cracked plate subjected to uniaxial 

tension shown in Figure 1. In the BFM, an imaginary boundary corresponding to 

the finite plate is traced on a cracked infinite sheet. These boundaries are 

then divided into a finite number of boundary elements. On each boundary 

clement, a concentrated force pair Pi and Qi and a moment Mi (i = 1 to N) 

are applied at a small distance 

the boundary element. This small offset from the boundary element was used to 

avoid the inconvenience of singularities in the computation of the stresses on 

the boundaries. In the present work, bi was set equal to one quarter of the 

element length. 

on the outward normal from the mid-point of ‘i 

th acting on the i Mi The concentrated forces Pi and Qi and moment 

boundary element produce stresses on the other boundary elements. The resultant 

forces and moments on each boundary element j are found by integrating the 

stresses over the, boundary element length (assuming a unit thickness). On each 

boundary element j, the sum of all the resultant forces and moments must be 

equal to the externally applied forces and moments acting on the boundary 

element. Denoting the externally applied forces as 

externally applied moment as T we can write the following equilibrium 

equations for the jth boundary element: 

and R , and the 
j yj 

RX 

j’ 

N 
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N 
R =  ' (Fyjpi P .  1 + F yjqiQi + F yjmi Mi) 
Yj i=l 

N 
T .  = C ( C j p  pi + CjqiQi + C. Mi) 

J i=l i J mi 

Here N is the total number of boundary elements; F , F  , F  , F  XjPi YjPi xjqi Y j q  

F , F  , C  , C  , a n d C  are called influence coefficients and are j mi xjmi yjmi jpi .hi 
defined as follows. 

F = force per unit force in the x-direction on the jth boundary 
XjPi 

element due to unit load pi acting in the y-direction on the i th 

boundary element. 

F - force per unit force in the y-direction on the jth boundary 

Pi 

Y.P J i  
acting in the y-direction on the i th element due to unit load 

boundary element. 

C = resultant couple per unit force created on the j t h  boundary 

Pi 

hi 
acting in the y-direction on the i th element due to unit load 

boundary element. 

, C , and C arc' defined in a similar manner. j in 
F 

X . ' l *  . 1 1  Yjqi .I 1 i , F  , F  x . m .  ' yjmi j q i  E' 
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The resulting system of equations for N boundary elements can be written 

a s  

3Nx3N ("3Nxl = 'R13Nxl 

where [F] is the influence coefficient matrix, ( P I  is the vector of 

unknowns, P ,  Q, and M, and ( R )  is the vector of externally applied forces. 

The influence coefficient matrix is square, fully populated and non-symmetric. 

Because the influence coefficient matrix and the externally applied load 

vector are known, the unknown force vector can be obtained by solving the system 

of linear algebraic simultaneous equations. 

M i  

the required boundary conditions, and, thus, produce a stress distribution 

inside the imaginary boundaries that is approximately equal to the stress 

distribution of the desired boundary value problem. 

The calculated set of Pi, Qi, and 

acting on the imaginary boundaries in the sheet w i l l  approximately satisfy 

DERIVATION OF FUNDAMENTAL SOLUTION FOR ORTHOTROPIC MATERIALS 

F o r  orthotropic materials, the BFM uses the elasticity solution for a 

horizontal and vertical concentrated force and a concentrated moment in an 

infinite orthotropic sheet with a crack. The formulation of this solution is 

presented below. 

Stresses in Orthotropic Materials 

From Lekhnitskii (ref. 2), the stresses iii an infinite orthotropic sheet 

can be written in terms of the two stress funct.ions, 4, and tP2, as follows 
f I 
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For simplicity, the derivation of the stress functions for the concentrated 

forces and for the moment acting at an arbitrary point in a infinite, cracked, 

orthotropic sheet will be presented separately. 

Concentrated Forces. The derivation of the stress functions for a pair of 

concentrated forces acting on a cracked, infinite orthotropic sheet was 

presented in ref. 1. For completeness, the derivation of these stress functions 

is shown in Appendix A. The stress functions are given below. 

( P 2  - i 2 ) B  f ( Z l ’  i2’ a)] + A 
- w1 

+ 
=1 - w2 
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where f(z, w, a) = Jz2  - a2 - Jw2 - a* - z + w, and the other terms in 
equations ( 4 )  are defined in Appendix A. 

Moment. Figure 2 shows how superposition was used to determine the 

stress functions for a moment acting on a cracked, infinite orthotropic sheet. 

The uncracked sheet with the moment applied at 

The normal and shear stresses acting on the line y = 0, 1x1 < a, are shown as 

N(x) and T(x). The problem with the crack-face loading (Figure 2(c)) is 

superimposed on the uncracked problem (Figure 2(b)) to produce the stress-free 

crack face shown in Figure 2(a). 

zo is shown in Figure 2(b) .  

The stress functions for a moment in an infinite, uncracked orthotropic 

sheet (used for Figure 2 ( b ) )  are derived (following ref. 4) in Appendix B. 

These stress functions are 

where 

The terms p l ,  p2, Cll, C12, C21, and C2* are defined in Appendix A. 

The stress functions for the loads N(x) and T(x) applied to the crack 

face in Figure 2 ( c )  are given in Appendix A ,  equations (A4). Here, 
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N(x) = oy(x,O) and T(x) = r (x,O) in the uncracked sheet in Figure 2(b). 

From equations ( 3 )  and ( 5 ) ,  
XY 

(I (x,O) = -2 Re 
Y 

1 'lAM + p2BM 
r (x,O) - 2 Re [( Y z1 - wl)? (z2 - w2)2 

Using equations ( 6 )  and remembering that 2 Re[f(z)] = f(z) + f(z), the 

loading functions in the integrands in equations ( A 4 )  can be simplified as 

follows: 

' lAM + '2BM 
(x - W2)J ] + 2 R e  [ BM AM 

(x - w 1 ) 2  (x - w 2 )2 
+ plN(x) + T(x) = -2 plRe [ (x - w1)2 

Substituting these expressions in equations ( A 4 ) ,  integrating, and then 

adding equations ( 5 ) ,  the following expressions are found for the stress 

functions for the loading shown in Figure 2(a): 
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where 

The stress functions used in the fundamental solution for orthotropic 

materials are found by combining equations ( 4 )  and ( 8 ) .  Once the stress 

functions are known, it is a simple step to calculate the stresses at any 

point in the body using equations ( 3 ) .  Then, as mentioned earlier, the 

stresses are integrated over each element length to obtain resultant forces 

f o r  use in equation (2). 

Stress-Intensity Factor Equation 

From Snyder and Cruse (ref. 5), the stress-intensity factors for 

orthotropic materials may be expressed in terms of the stress functions as 

follows : 
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By substitut ing from equations ( 4 )  and ( 8 )  into the above equation and 

taking the limit, the mode I and mode I1 components of the stress-intensity 

factor for a horizontal and vertical force and a moment in an infinite cracked 

orthotropic sheet may be written as follows: 

where 

a Jw2 - a2 
2 2 H(w,a) = 

(w - a )(a - w) 

RESULTS AND D I S C U S S I O N  

The following four graphite/epoxy (gr/ep) laminates were used in the 

analysis: [0/+45/90Is, [0], [+45Is, and [O/f45Js. Table 1 presents the 

laminate constants for the four laminates. The Oo lamina properties (ref. 5) 

were used with lamination theory to calculate the elastic constants for the 

other laminates. (Here, the Oo-direction is defined parallel to the load 

axis.) The results for the [ 0 /+45 /90 ]  quasi-isotropic laminate were compared 

with isotropic solutions from the literature. To show the effects of the 
S 
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specimen boundaries, the results are presented using the following stress- 

intensity correction factors FI and FII: 

Verification 

To evaluate the improved Boundary Force Method for orthotropic materials, 

the BFM stress-intensity factor solutions were compared to results from Snyder 

and Cruse (ref. 5) for a center-crack tension specimen with a finite width of 

H/W - 3.0. In Figure 3 ,  the curves represent the BFM calculations, while the 

symbols indicate the values taken from Snyder and Cruse. The stress-intensity 

correction factors calculated by the BFM agree, within + 3 % ,  with the values 

from Snyder and Cruse for all laminates considered. For the [0/+45/90] 

laminate at 2a/W - 0 . 8 ,  the solution from Snyder and Cruse was 2% lower than 

the solution for an isotropic material (ref. 6 ) ,  whereas the BFM solution for 

the [0/+45/90]s laminate was only in error by .OOS% compared to the accepted 

isotropic solution. Therefore, for the other laminates considered, the 3% 

difference between the present results and those of Snyder and Cruse may 

represent an error in the solution of Snyder and Cruse. 

S 

Convergence Studies 

To demonstrate the benefit of the addition of  the moment, a convergence 

study was done f-or R single edge crack in a quasi-isotropic plate. Figure 4 

shows the convergc2nce o f  the solution for an ;i/W ratio of 0.6. The solution 

with both forces and moments converged to within 1 . 5 %  of  the solution in ref. 
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7 with 63 DOF; the solution with only forces required 117 DOF to converge to 

the reference solution. 

Convergence studies such as that shown in Figure 4 were done for other 

laminates shown i n  Table 1 with an edge crack to determine if the material 

properties had any effect on the convergence rate. 

a different solution, the number of degrees of freedom required for 

convergence was similar for all the laminates. In general, with the moment 

included, between 80 to 100 DOF were required for convergence for 

configurations with deep cracks (a/W 2 0.6). 

smaller a/W ratios. 

Although each converged to 

Fewer DOF are required for 

Edge Crack Solutions 

Stress-intensity correction factors were also calculated for a single 

edge crack and an inclined edge crack for a range of crack-length-to-width 

ratios and material properties. Other orthotropic solutions for these two 

problems were not available for comparison. 

Sinnle EdPe Crack. Figure 5 shows the stress-intensity correction factor 

F for a single edge crack for four graphite/epoxy laminates: 

[ O ] ,  [145Is, and [ g o ] .  

within 0.005% with the isotropic results for this configuration. For very 

small a/W ratios, the solutions for the different laminates do not tend 

toward a single value, as is the case in the center crack configuration 

(Figure 3 ) .  Thus, the anisotropy of the material has more effect for small 

edge cracks than for small center-cracks. Table 2 lists correction factors 

plotted in Figure 5. 

[0/+45/90Is, 

The results for the quasi-isotropic laminate agreed 
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Inclined Edge Crack. Figures 6 and 7 show FI and FII,  respectively, 

[0/+45/90Is, for an inclined edge crack for three graphite/epoxy laminates: 

[O], and [go]. In Figure 6 ,  the mode I component does not converge to a 

single value for small a/W ratios, much as in Figure 5. The mode I1 

component shown in Figure 7 varies less with anisotropy than the mode I 

component shown in Figure 6 .  Tables 3 and 4 list the correction factors 

plotted in Figures 6 and 7. 

CONCLUDING REMARKS 

In this paper, the Boundary Force Method (BFM), a form of an indirect 

boundary element method, is used to analyze composite laminates with cracks. 

The BFM uses the orthotropic elasticity solution for a concentrated horizontal 

and vertical force and a moment applied at a point in a cracked, infinite 

sheet as the fundamental solution. This formulation is an improvement over 

a previous method that did not include the moment but used only the horizontal 

and vertical forces on the boundary. The necessary stress functions for this 

fundamental solution were derived using the complex variable theory of 

orthotropic elasticity. The orthotropic formulation of the BFM was verified 

by comparing solutions for a center-crack specimen subjected to uniaxial 

tension to other solutions. The BFM results agreed well with accepted 

solutions. 

Parametric studies were also done for a single edge crack, and an 

inclined edge crack, bot-h loaded in uniaxial tcnsion, with a variety of 

materials properties. Only a slight effect was seen due to material 

anisotropy. No other orthotropic solutions were available for comparison. 
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The additions of the moment degree of frcedom to the orthotropic BFM was  

shown to greatly increase the convergence rate of the solution. Thus, fewer 

boundary elements were required to achieve the same accuracy. 

This work has resulted in a further extension of the Boundary Force 

Method in the analysis of composite laminates with cracks and notches. This 

method yields accurate solutions with minimal modeling effort, even for 

complex configurations. The accurate stress-intensity factors obtained with 

this method should be useful in predicting fracture strengths of arbitrarily 

shaped composite laminates. 
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I .  

APPENDIX A - DERIVATION OF STRESS FUNCTIONS FOR POINT LOADS 

IN CRACKED, ORTHOTROPIC SHEET 

This appendix (taken from ref. 1) presents the derivation of the stress 

function for a pair of point loads in a cracked, infinite orthotropic sheet. 

Figure 8 shows how superposition was used to determine the stress functions. 

The uncracked sheet with the point loads applied at 

along y = 0, 1x1 < a, are shown in Figure 8(b). The point loads in Figure 

8(b) are superimposed on the stresses due to the crack-face loadings in Figure 

8(c) to produce the stress-free crack face shown in Figure 8(a). 

zo and the stresses 

The stress functions for a point load in an infinite, orthotropic sheet 

(used for Figure 8(b)) are derived from Lekhnitskii (ref. 2): 

where 

z = x + p . y  
j J 
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(A?)  

Here Y and Y are the Poisson’s ratios; p l ,  p 2 ,  p l ,  p2 are the 
XY YX 

complex roots of the characteristic equation - 2v ) p  + E 
Y XY 

and the barred quantities represent the complex conjugates of the underlying 

functions. 

For isotropic materials, the roots of the characteristic equation are 

p1 = p2 - i, and the term 
zero. When using the orthotropic equations for isotropic materials, a small 

( p l  - p 2 )  in the denominator of equations (A2)  is 

pl - perturbation was introduced in the values of p1 and p2 so that 

i(l + 6 )  and p2 = i(1 - E )  where 6 - 0.0001. 

To find the stress functions €or the loading shown in Figure 8(c), the 

stress functions €or a point load applied at an arbitrary point on the crack 

face are used. From Savin (ref. 8 ) ,  the stress functions for this loading are 

as follows: 



where P and Q are the normal and tangential point loads applied to the 

crack face, and t is the location of the load point on the crack face (-a < 

t < a), as shown in Figure 9 .  

By integrating equations (A3) over the crack face, the stress functions 

for the non-uniform distributed loads applied to the crack face can be written 

as  follows: 

In order to make the crack stress free along the crack line -a < x < a, 

the loadings N(x)  and T(x) are specified to be the same as the stresses 

found in the equivalent uncracked sheet shown in Figure 8 ( b ) .  That is, 

N(x) = u (x,O) and T(x) = 7 (x ,O) .  Thus, from equations ( 3 )  and ( A l ) ,  the 

normal and shear stresses on the line y = 0 are 
Y XY 
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Using equations ( A 5 )  and remembering that 2 Re [f(z)] = f(z) + f(z), the 

loading functions in the integrands in equations ( A 4 )  can be simplified as 

follows : 

Substituting these expressions into equations ( A 4 ) ,  integrating, and then 

adding equations (Al), the following expressions are found for the stress 

f-unctions for  the loading shown in Figure 8(a): 

20 



(These stress functions are identical to those presented by Snyder and Cruse 

(ref. 5), derived by formulating the problem as a Hilbert problem.) 
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APPENDIX B - DERIVATION OF STRESS FUNCTIONS FOR MOMENT 

IN INFINITE, UNCRACKED ORTHOTROPIC StlEI<'I' 

This appendix presents the derivation of the stress functions for a moment 

applied in an infinite uncracked orthotropic sheet. This derivation follows the 

procedure outlined in ref. 4 .  

Consider the pair of forces applied as shown in Figure 10(a). By 

superimposing the stress functions for concentrated forces in the y-direction, 

the stress functions for this loading are 

d2(z2) = c P log(z2 - w2) - c P log(z2 - w2 - € )  
22 Y 22 Y 

To obtain the stress functions for a moment due to a force pair in the y-  

direction, set M - -P e and take the limit of equations (B2) as e approaches 

zero. 
Y 

-C22M 

22 - w2 
d2(z2> = 

Consider the pair of forces applied as shown in Figure 10(h). By 

superimposing the stress functions for concentrated forces in the x-direction, 

the stress functions for this loading are 

22 



d1(z1) = Cl1PxlOg(zl - wl) - cllPxlog(zl - w1 + P1€) 

d2(z2) = c21Px10g(z2 - w*) - c21Pxlog(z2 - w2 + P € ) 2 Y  

To obtain the stress functions for a double force due to a moment in the x- 

direction, set M = -Pxc and take the limit of equations (B4) as e approaches 

zero. 

PlC1lM 
- w1 

4,(z1) - 

By superimposing these stress functions, the solution fo r  a concentrated 

moment due to the t w o  force pairs (M - -2Pc) can be written as 

23 



Table 1 - Laminate Constants 

GPa E GPa u G GPa 
Ex * Y’ XY XY * 

Laminate 

[0/245/90] 60.04 60.04 0.259 23.85 
(01 11.72 144.8 0.017 9.65 
[ 245 ] 31.18 31.18 0.615 38.03 
[ 2301 17.64 66.99 0.262 30.94 
~ 9 0 1  144.8 11.72 0.210 9.65 

S 

S 

S 
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Table 2 - Stress-Intensity Correction Factors for Edge Crack 

.1 1.1894 1.1589 1.2861 1.1889 

.2 1.3656 1.3576 1.4537 1.3600 

.3 1.6567 1.6923 1.7623 1.6397 

.4 2.1062 2.1884 2.2088 2.0594 

.5 2.8015 2.9034 3.0347 2.9772 

.6 4.0021 4.2344 4.2323 3.7939 
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Table 3 - Stress-Intensity Correction Factors for Inclined Edge Crack 

[OI 

.1 

. 2  

.3 

. 4  

. 5  

.6 

0.7113 0.7495 0.7164 

0.8130 0.8180 0.8043 

0.8713 0.8987 0.8759 

1.0091 1.0407 1.0113 

1.1952 1.2095 1.1969 

1.4442 1.4792 1.4462 
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Table 4 - Stress-Intensity Correction Factors for Inclined Edge Crack 

FI I 

[ O I  

.1 0.3739 0.3737 0.3760 

.2 0.3957 0.4029 0.4001 

.3 0.4452 0.4451 0.4472 

.4 0.5024 0.5026 0.5047 

.5 0.5795 0.5804 0.5815 

.6 0.6804 0.6855 0.6820 
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